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Abstract. This work presents the tool support for a model-based de-
velopment methodology for verified software systems. We focus in this
discussion on the design, implementation and the verification phase of
the overall methodology developed for safety-critical embedded systems.1

In particular, we show how design models are transformed into C code
and Isabelle/HOL theories by code generators. We discuss the applied
AutoFocus 3 tool chain and its basic principles emphasizing the verifi-
cation of the system under development as well as the check mechanisms
we applied to raise the level of confidence in the correctness of the im-
plementation of the automatic generators.

1 Introduction

Embedded software-based systems development has become a most challenging
field of software engineering research and industrial application. These systems
underlie real-time requirements, they are safety critical, they must be highly
reliable, and they are distributed over multiple processing units.

To support the contemporary embedded system development CASE tools are
used in industry – they allow a simple and (mostly) intuitional design of dis-
tributed systems and applications. Executable code is generated directly from
the models developed using these CASE tools. In state-of-the-art industrial de-
velopment quality assurance is performed by extensive testing of the generated
code. However, testing can only demonstrate the absence of errors for exemplary
test cases, but not the correctness of the system. In opposite to testing, formal
verification delivers a correctness proof for safety critical properties of the sys-
tem. Nevertheless, verification requires significant effort. Strictly speaking, it is
impossible today to verify every property of every component in a system, when
considering industrial software development. Thus, only the most critical parts
of a system can be verified, and the whole process of specification and verification
must be set up in a way that minimizes the overall effort – the verification process
must be integrated into model-based development of safety-critical systems.

Nonetheless, in some cases, even after verifying certain properties, incon-
sistencies can still remain in the specification, model or code – most often an
1 This work was fully funded by the German Federal Ministry of Education, Science,

Research and Technology (BMBF) in the framework of the Verisoft XT project. The
responsibility for this article lies with the authors.



important property is overlooked as nicely stated by Donald E. Knuth’s famous
saying: “Beware of bugs in the above code – I have only proved it correct, not
tried it.” Thus, not only verification techniques, but also testing and simulation
must belong to the development process.

Therefore, a methodology is needed, which not only allows this integration
into the process of modeling, but also reduces the verification and integration
effort. For this purpose we propose a tool chain emphasizing the verification
of the system under development. In the remainder of this article we outline a
development methodology for embedded safety-critical systems. We concentrate
here on the AutoFocus 3 tool chain, which is employed in the design, imple-
mentation and verification phases of the development methodology. In particular
we present the different parts of the tool chain and discuss both the motivation
and the benefits.

2 Development Methodology

Figure 1 illustrates the structure of the development methodology in a top-down
manner: from an informal specification through multiple transformation steps
we get a verified formal specification, a verified executable model and also a
verified C code implementation. The boxes represent development artifacts, the
dark arrows show the dependency relations, i.e., which artifact is used as input
for the development of the successor artifact. The light arrows show the proof
relations between the artifacts.
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Fig. 1. Development Methodology



Beginning with a requirements specification, which captures the relevant as-
pects of the system to be developed in flexible yet informal way, we derive a
tabular semi-formal specification. This first step raises the level of precision by
transforming the free text requirements into a structured form using specific
pre-defined syntactic patterns as presented in [5].

The tabular semiformal specification can be also rewritten to a Message
Sequence Charts (MSCs) representation [6,9,10] according to the approach pre-
sented in [17]. The purpose of using MSCs for specification of highly interacting
systems is to obtain a better overview in comparison to a textual representation.

The MSC specification or the semiformal specification, respectively, is trans-
lated to a specification in Focus [3], a framework for formal specifications and
development of distributed interactive systems. This framework is preferred here
over other specification frameworks since it has an integrated notion of time and
modeling techniques for unbounded networks (where we have replications of sys-
tem components of the same kind), provides a number of specification techniques
for distributed systems and concepts of refinement. Moreover, Focus specifica-
tions are much more readable and manageable than specification done according
to approaches like B-method [2] or Z [19] – the advantage of graphical notation is
extremely important when we are dealing with systems of industrial size. Focus
supports a variety of specification styles, which describe system components by
logical formulas or by diagrams and tables representing logical formulas.

In general we represent in Focus two kinds of specifications: a requirements
specification of the system and its architecture specification. Both of them are
extracted from the MSC specification and/or the semiformal specification. This
representation prepares the ground to verify the system architecture specifica-
tions against the system requirements by translating both to the theorem prover
Isabelle/HOL [12] via the framework “Focus on Isabelle” [18].

In the remainder of this paper we discuss the highlighted part of the method-
ology: the AutoFocus 3 tool chain.

As the next step of the methodology, we translate the architecture specifica-
tion to a representation in the related CASE tool AutoFocus 3 [8], a scientific
research prototype, which is a tool implementation based on the Focus ap-
proach. We can now use the simulation and model-checking facilities of this
tool.

The requirements specification will be translated from Focus to temporal
logic. This representation gives us a basis to model-check the AutoFocus 3
model against. The transformations from Focus to temporal logic and to the
AutoFocus 3 representation are formal and schematic, given some constraints
on the Focus specification are obeyed. The AutoFocus 3 model is also ex-
ported to Isabelle/HOL to prove its properties – the AutoFocus 3 model is
in general a refinement of a Focus specification, thus its properties can be
slightly different, i.e., more strict, from the ones specified on the Focus layer.
On the other hand, the proof schema, which has been developed for the Focus
specifications, can be (partially) reused. Finally, the AutoFocus 3 model is



transformed to a corresponding C code by a code generator. We can show that
this step preserves properties of the model [7].

Altogether, the methodology guides us from an informal specification via
stepwise refinement to a verified formal specification, a corresponding executable
verified model, and also a corresponding verified C code implementation (which
can be verified using model checking against).

3 The AutoFOCUS Tools Chain

As depicted in Fig. 1 the methodology is based on the software design tool Auto-
Focus 3 and the theorem prover environment Isabelle/HOL. We have combined
these two tools by implementing a generator for the formal transformation of
the design model into the theorem prover model. Furthermore, the tool chain
also provides another code generator for producing a C code implementation
of the design model. In this section, we discuss the tool chain and show how
the different parts are interlinked with each other. Our goal is to establish a
sound verification environment with a high confidence in the correctness of the
environment and thus of correctness the designed system.

C-Code
Translation
Validation

Generated
theories

Generated
code

Model
Checking

Fig. 2. Generation Tool Chain and Validation Mechanisms

Fig. 2 shows the relevant parts of the current tool chain. The central part is
the transformation of the design model into the C code, i.e., the implementation
path of the product under development. This central track is supported by two
verification mechanisms: semi-automatic verification with a theorem prover and
fully automatic verification by means of a model-checker. These flanking mea-
surements fulfill two purposes. On the one hand they verify actual properties



of the design model and the implementation code, On the other hand differ-
ing results of both techniques indicate an implementation fault in one of the
generators.

When building a tool chain based on automatic generators it is vital to take
great care about what one is doing. First, one must understand the semantics of
the generation input, e.g., the AutoFocus 3 model’s semantics, and the target
language, e.g., the C language. Since automatic code generation only makes
sense, if the behavior of the generated program is equivalent to the behavior of
the input model (modulo an abstraction from the latter to the former), we must
show that the transformation is preserving the semantics.

We strongly emphasize that the semantics of the design language has been
defined before implementing the generators. Unfortunately, many code genera-
tion environments do not follow this up-front approach. They either do not care
about behavior at all (i.e., generate structural outputs only, e.g., class diagrams
without method implementations) or consider the semantics of the generation
input to be defined by the semantics of the generation outputs (i.e., the seman-
tics of the design model is defined by the semantics of the generated code). The
first case is of no further interest to us, since the generator only produces hull
code that needs to be extended manually. The second case forces the user of the
input language to work around flaws of the generator as we have seen with bugs
in compilers. Usually, such flaws are exploited by flaws in the developed system,
while in our approach the semantics of the design language provide the basis for
the specification of the generators.

Clearly, since our code generators are also pieces of software themselves they
are also prone to implementation mistakes as is any other software product.
However, there are ways to gain a high confidence in the correctness of the
generators.

We have used the following mechanisms in order to validate the code gener-
ator implementations using the design language semantics as the starting point:

– A paper and pencil proof has shown the behavioral equivalence between the
AutoFocus 3 model and the generated C code [7].

– A second paper and pencil proof has shown the behavioral equivalence be-
tween the AutoFocus 3 model and the generated Isabelle/HOL theory [20].

– For each developed system, translation validation between the generated
code and the theory shows their behavioral equivalence. This further en-
hances the confidence in the generator implementations by exploiting possi-
ble implementation flaws if the translation validation does not succeed. The
translation validation builds on the C code verification in Isabelle/HOL as
presented in [16].

– The two generators have been implemented independently by different de-
veloper teams based on the respective equivalence proofs.

Note, that the model can be non-deterministic, while the C0 program is
deterministic. Still, this is correct according to the argument that the C0 program
exposes the non-determinism in an unfair way: it always uses the same resolution.
However, in order to do the translation validation between the Isabelle/HOL



model obtained from the AutoFocus 3 model and the C0 program, both the
exporter and the generator must resolve the non-determinism in the same way
to be behaviorally equivalent. In particular this means that transition segments
of an automaton and the mappings defined in a function specification must be
totally ordered. We use the unique object identifiers of the AutoFocus 3 model
objects for this total order.

4 AutoFOCUS

AutoFocus 3 [8,15,14] is a scientific CASE tool prototype2 implementing a
modeling language based on a graphical notation (see Fig. 3) and a restricted
version of the formal Focus semantics, in particular the time-synchronous frame.

We give a brief introduction of the current language.
The system structure specification captures the static aspects of the system

description. We specify a network of communicating components working in
parallel (assuming a global synchronized time frame). Each component has a
syntactic interface described by a set of ports. Each port is either an input or
an output port, has a data type and an initial value.

Furthermore, each component is declared to be weakly causal or strongly
causal. Weak causality models instantaneous reaction, while strong causality
models a delayed reaction. The network of components is formed by connecting
ports with channels. From the semantics point of view, we need to avoid weakly
causal feedback loops (Brock-Ackermann anomaly). Fortunately, this can be
checked easily by the tool’s model constraint checker.

System structure specifications may be separated into hierarchic views in
order to deal with larger models. Components can be refined into a set of sub-
components introducing both local communication and communication to the
environment through the interface of the parent component.

Atomic components have their behavior specified using one the following
variants: a stateful automaton specification or a stateless function specification.
An automaton specification describes an input/output automaton. It consists of
a set of control states, a set of typed data state variables, and a set of transitions.
One of the control states is marked as the initial state. Every data state variable
is also initialized to a given value.

Each transition has a source and a target control state. Furthermore, each
transition specifies patterns of messages received via the input ports of the re-
spective component and preconditions over the inputs and the data state vari-
ables. A transition can fire, if its source state is the current control state, the
current input values match its input patterns, and the precondition is fulfilled. If
a transition fires, the current state of the component changes to its target state,
the output values of the component are updated according to the output pat-
tern specification of the transition, and the data state variables are also updated
as specified by the postcondition part of the transition specification. Note that

2 http://af3.in.tum.de/



more than one transition might be enabled for a given component state and set
of input port values. Thus, component behavior can be non-deterministic.

Using the three views introduced above, we obtain an executable model. We
can now validate the model using the AutoFocus 3 simulator to get a first
impression of the system under development and possibly find implementation
errors that we introduced during the manual transformation of the Focus spec-
ification into a AutoFocus 3 model. Automatisation of this transformation is
future work.

Fig. 3. AutoFocus 3 design tool

5 The Isabelle/HOL Generator

Formal verification is integral part of the presented methodology (cf. Sec. 2).
Formally specified requirements can be verified using the Isabelle/HOL theorem
prover (Fig. 1). For this purpose we have developed an Isabelle/HOL code gen-
erator, which automatically generates Isabelle/HOL theories from AutoFocus
models. The code generator supports following AutoFocus language features:

– Data Dictionary: Data type definitions, function definitions, including recur-
sive functions and functions on user-defined types.



– Atomic components: input/output automata with multiple control states
and local variables for stateful components , function specifications for state-
less components directly mapping inputs to outputs.

– Composite components: components consisting of multiple subcomponents
connected by channels, strong and weak causality (delayed and instantaneous
output) for subcomponents, including determination of correct execution
order for weakly causal processing paths.

The behavioural equivalence between AutoFocus models and their generated
representation in Isabelle/HOL has been shown in a paper-and-pencil proof [20].

The Isabelle/HOL code for an AutoFocus model is created as follows.
Firstly, the user initiates code export for the data dictionary, which generates
a theory containing data type declarations and function definitions used in the
model. Then the user may generate code for any of the components in the model
– when selecting an atomic component, a theory will be generated containing
the input/output interface definition for the component and the transition func-
tion originating from the automaton or function specification used to define the
component’s behaviour; when selecting a composite component, recursively the
theories for all subcomponents will be generated and, ultimately, the theory for
the considered component, whose transition function performs data transmission
between the subcomponents and invokes all subcomponents’ transition functions.
Thus, generating code for the root component of an AutoFocus model yields
a set of theory files encoding the AutoFocus model in Isabelle/HOL.

The generated code and proofs on it make use of extensive basic theory
libraries [21]. The libraries comprise several aspects:

– Theories for AutoFocus message stream processing, especially generic def-
initions and proof results for processing finite and infinite data streams by
components with arbitrary transition functions.

– Theories for definition and usage of temporal logic specifications, especially
generic definitions and proof results for numerous temporal operators on
arbitrary time intervals, which make it easy to define syntax and semantics
for common linear-time temporal logic notations like LTL and MTL.

– Generic definitions for representation of AutoFocus components, especially
transition functions for atomic and composite components, proof results for
components’ transition functions and additional stream processing results
for AutoFocus components for finite and infinite data streams.

Based on these basic theories and semantic analysis of the AutoFocus model
the Isabelle/HOL exporter generates code both for representing the model and
for definition and proof of theorems that support subsequent verification of
model’s properties in Isabelle/HOL. This way, we were able to formally verify
several requirements to the AutoFocus model from the Verisoft XT case study,
which were formalised as LTL properties, by encoding them in Isabelle/HOL and
proving there correctness for the Isabelle/HOL model representation automati-
cally generated by the Isabelle/HOL code exporter.



6 The C0-Code Generator

In order to obtain executable code from an AutoFocus 3 model, we have im-
plemented a C code generator [7], more precisely a generator for C0 code, a C
language subset constructed for usage with the Isabelle/HOL verification en-
vironment as discussed in [16]. [13] and [11] present the verification of a non-
optimizing C0 compiler, which was itself written in C0. C0 differs from C by re-
stricting the language. Well-known, hazardous features, like pointer arithmetic,
are forbidden in C0, while other restrictions, like the non-nested use of function
calls, ease the reasoning and verification with Isabelle/HOL.

The C0 code generated from AutoFocus 3 models does not need language
features still available in C0 like dynamic memory allocation, pointers or arrays.

As a result of these further restrictions, we gain the advantage of being able
to compute memory consumption at compile time. We can also compute worst
case execution times, since all operations and function calls are non-recursive,
e.g., we can estimate the execution times with the tool aiT by AbsInt [1].

The code generation step is the last formal transformation in our method-
ology. The correctness of this step will be shown by paper and pencil proof of
the generation algorithm similar to the proof for the Isabelle/HOL exporter [20].
Here, we show that the C0 program is an admissible simulation of the Auto-
Focus 3 model.

In summary this concludes our methodology as presented in Figure 1, but
that is of course not the end of the complete development process: we need to
deploy the code into the execution environment and also verify this deployment.
However, this is currently out of our scope and left to future work.

7 Conclusions

We have presented the AutoFocus 3 tool chain for a model-based develop-
ment methodology for verified software systems. Our focus was on the design,
implementation and the verification phase of the overall methodology. We have
shown the transformation of design models into C code and Isabelle/HOL theo-
ries by code generators and explained how the AutoFocus 3 tool chain and its
principles can be applied to verify a system under development.

The applicability of the tool chain has been demonstrated by two case studies
on embedded control systems, both being industrial case studies from automo-
tive area. The case study referred to in [4,17] was motivated and supported by
DENSO CORPORATION and yields approx. 3 KLOC of generated code. The
ongoing case study [22] is supported by Robert Bosch GmbH and yields approx.
17 KLOC of generated code and 38 KLOC of generated Isabelle/HOL theories,
respectively.
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